尽管氢是丰富的元素,但在自然界中,氢一般与氧结合成水(H2O)、甲烷(CH4)或是天然气的主要成分。目前,工业氢来自天然气,但这个过程中消耗了大量的能量,同时也向大气释放出二氧化碳,从而加剧了全球碳排放的产生。
通过电解从水中释放出氢是一种工业方法,但之前都是将铂作为电解水的最佳催化剂。铂催化成本过高,若大量生产很不现实。由此,研究人员重新设计了一种廉价和普通的工业材料,其效率几乎与铂一样,这一发现有可能给工业制氢带来彻底变革。
自第二次世界大战以来,石油工程师使用二硫化钼帮助提炼石油。但是至今为止,这种化学物质被认为不是通过电解水产生氢的很好的催化剂。最终,科学家和工程师搞清楚了原由:最常用的二硫化钼材料的表面具有不合适的原子排列。通常,二硫化钼晶体表面上的硫原子被绑定至三个钼原子下方,该配置不利于电解水。
2004年,斯坦福大学化学工程教授延斯在丹麦技术大学曾有一个重大发现:在这种晶体边缘周围,部分硫原子只与两个钼原子绑定。在这些边缘部位,其特点是双键而非三个键,钼的硫化物能更有效地形成氢气。
现在,斯坦福大学博士后研究员雅各布·凯普斯高采用了一个已有30年的“食谱”做法,在其边缘制成具有很多这些双键硫的硫化钼形式。这样,用简单的化学方法,研究人员合成了这个特殊的魔草硫化物纳米团簇。并将这些纳米团簇存放于导电的材料石墨片中,让石墨和钼的硫化物结合在一起形成一个廉价的电极,成为替代昂贵的电解催化剂铂的理想之物。
接着问题来了:这种复合电极可以有效推动化学反应、重新排列水中的氢原子和氧原子吗?斯坦福大学化学工程助理教授托马斯·哈拉米略说:“将这种复合电极浸入水中略微酸化,这意味着其包含带正电荷的氢离子。这些正离子被吸引到魔草硫化物纳米团簇,它们的双键形状给予其恰到好处的原子特性,将电子从石墨导体传递到正离子。这种电子转移把正离子变成中性的分子氢,然后逐渐冒出气体。”
研究人员说,最重要的是发现魔草硫化催化剂造价低廉,从水中释放出氢的潜力接近基于昂贵铂的系统效率。目前只在实验室中取得的成功仅仅是一个开端,下一步的目标是将这种技术规模化,以满足全球每年对氢的大量需求。
本网注明:本网内容旨在传播更多窑炉相关行业资讯与信息,本文内容仅供参考。